Kutsvaga Iyo Mean, Median, uye Mode muPython: A Comprehensive Guide on Analyzing Data.
Kuongorora data chikamu chakakosha chekunzwisisa uye kududzira dataset. Chimwe chinhu chakakosha chekuongorora data kuverenga zvinoreva, median, uye maitiro e data. Aya matanho matatu anomiririra maitiro epakati uye anobatsira pakuona mafambiro uye mapatani mune data. Muchinyorwa chino, tichaongorora pfungwa dzezvinoreva, yepakati, uye modhi, uye maitiro ekuaverenga uchishandisa Python. Tichakurukurawo maraibhurari akasiyana-siyana uye mabasa anobatanidzwa mukugadzirisa matambudziko akafanana.
**Kureva** iavhareji kukosha kwedataset, inoverengerwa nekupatsanura huwandu hwehuwandu nehuwandu hwehuwandu hwe dataset. **Median** kukosha kwepakati kwedataset kana rarongwa mukukwira kana kudzika. Kana dhatabheti riine nhamba isina kujairika yezvikoshi, yepakati ndiyo yakakosha iri pakati chaipo, nepo kune kunyange nhamba yehukoshi, yepakati ndiyo avhareji yehuviri hwepakati. **Modhi** inoreva kukosha (s) kunoitika kazhinji mudhatabheti.
Kuti tiverenge matanho aya, isu tichanyora chirongwa chePython chinotora runyoro rwenhamba seyekupinza uye chinodzosa zvinoreva, median, uye modhi. Ngatitevere nhanho-ne-nhanho nzira yekushandisa iyi mhinduro.
# Step 1: Define a function to calculate the mean def calculate_mean(numbers): return sum(numbers) / len(numbers) # Step 2: Define a function to calculate the median def calculate_median(numbers): sorted_numbers = sorted(numbers) length = len(numbers) mid_index = length // 2 if length % 2 == 0: median = (sorted_numbers[mid_index - 1] + sorted_numbers[mid_index]) / 2 else: median = sorted_numbers[mid_index] return median # Step 3: Define a function to calculate the mode def calculate_mode(numbers): from collections import Counter count = Counter(numbers) mode = count.most_common(1)[0][0] return mode # Step 4: Implement the main function def main(): numbers = [int(x) for x in input("Enter numbers separated by spaces: ").split()] mean = calculate_mean(numbers) median = calculate_median(numbers) mode = calculate_mode(numbers) print("Mean:", mean) print("Median:", median) print("Mode:", mode) if __name__ == "__main__": main()
Kodhi iri pamusoro ine matanho mana. Kutanga, tinotsanangura basa rekuverenga zvinoreva rondedzero yenhamba. Muchikamu chechipiri, tinotsanangura rimwe basa rekuverenga pakati. Iri basa rinoronga rondedzero yekupinda uye rinowana kukosha kwepakati zvichienderana nehurefu hwerondedzero. Muchinhanho chechitatu, isu tinogadzira basa rekuverenga modhi tichishandisa Counter kirasi kubva kuunganidzwa module. Danho rekupedzisira rinosanganisira kutsanangura basa guru, iro rinotora mushandisi kupinza, rinodaidza izvo zvakambotsanangurwa mabasa, uye zvinoburitsa zvinoreva, yepakati, uye modhi ye data yekupinza.
Python Libraries for Statistics uye Data Analysis
Python inopa maraibhurari akawanda iyo inobatsira nekuongorora kwenhamba uye kugadzirisa data. Mamwe emaraibhurari anozivikanwa anosanganisira:
- numpy -Iraibhurari ine simba yekuverenga nhamba, kunyengera kwearrays, uye mutsara algebra.
- pandas -Iraibhurari inoshanduka inopa kushandura data uye kugona kuongorora uchishandisa DataFrame zvimiro.
- SciPy - Raibhurari inobata nesainzi komputa, kusanganisira optimization, kusanganisa, kududzira, uye zvimwe zvakawanda.
Kushandisa Numpy uye Pandas yeKuverenga Mean, Median, uye Mode
Pamusoro peiyo yekutanga Python kuita, isu tinogona kushandisa Numpy uye Pandas maraibhurari kuverenga zvinoreva, yepakati, uye modhi zvakanaka.
Pazasi pane muenzaniso wekushandisa Numpy nePandas kuverenga aya epakati maitiro edhataset:
import numpy as np import pandas as pd data = [4, 2, 7, 3, 9, 1, 6, 5, 8] # Using Numpy mean_numpy = np.mean(data) median_numpy = np.median(data) # Using Pandas data_series = pd.Series(data) mode_pandas = data_series.mode().tolist() print("Mean (Numpy):", mean_numpy) print("Median (Numpy):", median_numpy) print("Mode (Pandas):", mode_pandas)
Mumuenzaniso uri pamusoro, tinoshandisa Numpy mabasa `zvinoreva()` uye `median()` kuverenga zvinoreva nepakati, zvichiteerana. Kune iyo modhi, isu tinoshandura data redu kuita Pandas Series uye toshandisa iyo `modhi ()` basa, iro rinodzosera runyorwa rwemodhi.
Ichi chinyorwa chinopa kunzwisisa kwakadzama kwemazano ezvinoreva, epakati, uye modhi uye maitiro ekuaverenga uchishandisa ese ekutanga Python uye akakurumbira Python raibhurari. Vachishandisa nzira idzi, vanoongorora data vanogona kunyatsoongorora uye kududzira datasets kuti vatore mhedziso dzine musoro uye kuona mafambiro e data.